Government Degree College, Baramulla (Autonomous)

Term End External Examination 4 th Semester (Session- July 2024) <u>Subject: Biotechnology</u> Course No and Title: BTGC1422M/Biotechniques					
			Time:	2.15 hours Max Max	rks:100 Min. Marks:40
				Section A: Objective T	Type Questions
Q1. C	hoose the appropriate Answer:	(8x1.5=12)			
i.	The numerical aperture (NA) c measure of its:	of a microscope objective is a			
	A Magnification power B	Resolution			
	C Field of view D	Working distance			
ii.	In fluorescence microscopy, fluo	rophores are used because they:			
	A Absorb light and re-emit B	Reflect light without changing			
	at a different wavelength	its wavelength			
	C Increase the numerical D	Decrease the wavelength of			
	aperture of the lens	the light source			
111.	In ILC, how are the separated co	Des their selection			
	A By their migration B distance (Rf value)	By their colour			
	C By their molecular D weight	By their density			
iv.	In anion exchange chromatograp	hy, the stationary phase carries:			
	A Positively charged ions B	Negatively charged ions			
	C Neutral molecules D	Water molecules			
V	In the second dimension of 2-D	PAGE proteins are separated			
••	based on their:	THOL, proteins are separated			
	A Molecular weight B	Charge at a specific pH			
	C Hydrophobicity D	Isoelectric point			
vi	What is the primary function of S	SDS in SDS-PAGE?			
v I.	A To maintain proteins in R	To give proteins a uniform			
	their native state	negative charge			
	C To hydrolyse proteins D into smaller peptides	To stain the proteins for visualization			

vii. Which of the following techniques is used to detect and measure

Government Degree College, Baramulla (Autonomous)

specific proteins in a sample by using antibodies?

- A Polymerase Chain **B** Enzyme-Linked Reaction (PCR) Immunosorbent Assay (ELISA)
- **D** Flow Cytometry C Western Blotting

viii. In an ELISA, what is the purpose of the secondary antibody?

- A To capture the antigen **B** To detect the presence of the from the sample primary antibody
- **C** To bind to the substrate **D** To immobilize the antigen on and produce a colour the plate change

Section-B: Descriptive Type Questions (Short Type)

Q2 : Answer all the Questions

- $(8 \times 4 = 32)$
- i. What is the principle of bright-field microscopy? Write down limitations of bright-field microscopy?
- ii. What does Beer-Lambert's Law describe?
- iii. Give a detailed account on thin layer chromatography.
- iv. What is relative centrifugal force?
- v. What is the principle of native polyacrylamide gel electrophoresis and its applications.
- vi. Write down short note on isoelectric focusing.
- vii. Give brief account of enzyme linked immunosorbent assay (ELISA)
- viii. What are characteristics of radioisotopes commonly used in biology?

Section – C: Descriptive Type Questions (Medium type)

Answer all the questions:

 $(4 \times 7 = 28)$

Q 3. What is fluorescence microscopy and how does it differ from traditional light microscopy?

OR

Describe the principle and procedure of simple staining.

Government Degree College, Baramulla (Autonomous)

Q 4. Describe the principle behind differential centrifugation and its applications.

OR

Give a detailed account of ion-exchange chromatography.

Q 5. What is the principle of SDS-PAGE? How does SDS work to separate proteins?

OR

What is the principle of two- dimensional gel electrophoresis? How does two- dimensional gel electrophoresis work to separate proteins?

Q6. Explain the Principle, procedure and application of immunodiffusion.

OR

What are radioisotopes? Give short account on types and properties of radioactive decay.

Section – D: Descriptive Type Questions (Long type)

Answer any two of the following:

(2 x 14=28)

- Q 7. Explain the principle and procedure of negative staining & differential staining.
- 8. Discuss Paper chromatographic technique and its applications.
- **Q 9.** Discuss sodium dodecyl sulphate-polyacrylamide gel electrophoresis and its applications.
- Q 10 Write down the principle, procedure and application of radioimmunoassay (RIA).