Government Degree College, Baramulla (Autonomous)

Term End External Examination 4th Semester (Session- July 2024)												
<u>Subject: Chemistry</u> Course No and Title: CHMC1422M/Chemistry-IV												
T •				-								
<u>1 ime:</u>	2.13			100 Min. Marks:40								
Section A: Objective Type QuestionsQ1. Choose the appropriate Answer:(8x1.5=12)												
i .				the Transition State Theory is								
1.		Equilibrium				Equilibrium is maintained						
	71	-	betv		D	between reactants and						
		reactants and complex	activ	ated		products						
	С	Equilibrium		is	D	Equilibrium is maintained						
		maintained	betv	veen		between reactants, activated						
		products and complex										
ii.			•			t for photochemical reaction						
	Α	1				Temperature has the opposite						
		same effect thermal reaction		on		effect as on thermal reaction						
	C			no	р	Any of the above						
	C	effect	nus	по	ν	They of the above						
iii.	Th	e structures of [Cu(C	$N)_{4}]^{2}$	an	$d \left[Cu(NH_3)_4 \right]^{2+}$ are respectively						
	Α	1 1	nar	and	В	tetrahedral and square planar						
	~	tetrahedral			_							
		both square pla				both tetrahedral						
iv.		e IUPAC name Sodium	of Na	1 ₃ [Fe()5NOJ 18 Sodium						
	A	pentacyanoniti	rosvl		в	pentacyanonitrosonium						
		iron(II)	losyi			ferrate(I)						
	С	Sodium			D	Sodium nitrosylpentacyano						
		nitrosoniumpe	ntacy	ano		ferrate(II)						
		ferrate(I)										
v.			owing	pairs	s(s)	yield aldol product in presence						
	of a base. I) HCHO and PhCHO II) PhCHO and CH ₃ CHO											
	III) CCl ₃ CHO and PhCOCMe ₃											
		, <u></u>	1.100		- 5							

MM_CHM22C401_13072024_11

1

Government Degree College, Baramulla (Autonomous)

	A Ia	and II		B	I and III						
	C II	and III		D	II and IV						
vi.	Alkanes can be obtained from ketones by										
	I) Perl	kin conden	sation		II) Clemmensen Reduction						
	III) W	'olf-Kishne	r Reduction		IV) Cannizaro's Reaction						
	A Ia	and II			II and III						
	C III	I and IV		D	All of the above						
vii.		erg reagent									
	ch	enzene 1loride			Benzene sulphonamide						
	C Be	enzene sulp	bhonyl urea	D	Para-Toluene sulphonic acid						
viii.	Which of the following amine(s) cannot be acylated with acid										
	chloride										
		thylamine			Diethylamine						
		riethylamin			None of the above						
Section-B: Descriptive Type Questions (Short Type)											
Q2: A	Answer all the Questions (8 x 4 =32)										
i.	State (a) Grothus-Draper law and (b) Stark-Einstein law.										
ii.	Show using Arhenius equation, why the activation energy of a reaction cannot be zero or negative.										
iii.	State important limitations of Valence Bond Theory (VBT).										
iv.	Which complex among $[Fe(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ will have										
	greater crystal field splitting. State reason for your answer.										
					carbonyl compound which you						
	would use to prepare the following alkenes using Witting reaction?										
v.	react	lon:									
۷.	(a)	\sim /	\sim	(b)	СН3						
	(u)			(0)							
	With what starting materials, following compounds can be										
	prepared using a Reformatsky reaction:										
vi.	(a)		_{_он} (b) (Ъ	он о 						
	(a)	\frown		U							
			 0								

MM_CHM22C401_13072024_11

Government Degree College, Baramulla (Autonomous)

- vii. Amines can be prepared by reduction of nitriles with LiAlH₄. Suggest probable reaction mechanism.
- viii. Starting with nitrobenzene, how can you synthesize 3chloroaniline?

Section – C: Descriptive Type Questions (Medium Type)

Answer all the questions:

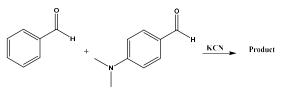
(4 x 7=28)

3

Q 3. What is Order of a reaction. Explain briefly how order of a reaction can be determined by(a) the use of differential rate expression (b) Half-life method

OR

What is Quantum Yield. Justify why the quantum yield of photochemical formation of $HBr_{(g)}$ from $H_{2(g)}$ and $Br_2(g)$ is very low (~0.01) while as that of $HI_{(g)}$ from $H_{2(g)}$ and $I_{2(g)}$ is very large (~10⁵).


Q 4. Discuss the optical isomerism of $[Cr(en)_2Cl_2]^+$ and $[Cr(ox)_3]^{3-}$ complexes.

OR

What is Jahn-Teller distortion. State with reasons which of the following complexes can undergo Jahn-Teller distortion.

(a) [CuCl6]4- (b) [Co(CN)6]4- (c) [Fe(CN)6]4-

Q 5. Predict the product(s) in the following reaction with mechanism. Why is cyanide ion a highly specific catalyst for the benzoin condensation?

MM_CHM22C401_13072024_11

Government Degree College, Baramulla (Autonomous)

How can you prepare aldehydes and ketones each from:

(a) Alkenes (b) Alkynes (c) Acid chlorides

Q6. Discuss the mechanism of: (a) Gabriel-Pthalimide reaction; and

(a) Gabriei-Pinalimide reaction; and

(b) Sulphonation of aninline

OR

Discuss electrophilic substitution reactions of aniline.

Section – D: Descriptive Type Questions (Long Type)

Answer any two of the following: (2 x 14=28)

- Q 7. Label and explain the given photo-physical processes in (a) Jablonski diagram I) Fluorescence II) Phosphorescence
 - I) FluorescenceII) PhosphorescenceIII) Internal CrossingIV) Intersystem Crossing

(b) State limitations of collision theory.

- **Q 8.** Discuss Crystal field splitting in week and strong magnetic field. Explain the factors effecting the magnitude of crystal field splitting.
- **Q 9.** Give the preparation and chemical properties of carboxylic acids. Provide a comparative account of nucleophilicity of acyl derivatives
- **Q 10.** What are diazonium salts? Discuss the mechanism of Sandmeyer and Gattermann reaction.

11_Chemistry Filename: Directory: C:\Users\Dell\Desktop\controller\4th semester\Print\13072024 Template: C:\Users\Dell\AppData\Roaming\Microsoft\Templates\Normal.dotm Title: Subject: Dr. Humaira Qadri Author: Keywords: Comments: Creation Date: 7/10/2024 12:51:00 PM Change Number: 7 Last Saved On: 7/10/2024 1:04:00 PM Dell Last Saved By: Total Editing Time: 5 Minutes Last Printed On: 7/10/2024 2:39:00 PM As of Last Complete Printing Number of Pages: 5 Number of Words: 843 (approx.) Number of Characters: 4,810 (approx.)