Government Degree College, Baramulla (Autonomous)

Term End External Examination 4th Semester (Session- July 2024)			
Subject: Electronics			
Course No and Title: ELTC1422M/Microprocessor and Microcontroller			
Time: 2.15 hours Max Marks:100 Min. Marks:40			
Section A: Objective Type Questions			
Q1. Choose the appropriate Answer: (8x1.5=12)			
i.	Which of the following best describes a continuous-time signal?		
	AA signal defined only at discrete points in timeBA signal defined for all values of time		
	C A signal that is only D A signal that is always periodic bounded		
ii.	A system is considered linear if it satisfies which of the following properties?		
	A Memorylessness and B Time invariance and causality invertibility		
	C Superposition and D Boundedness and stability homogeneity		
iii.	According to the convolution property of the Fourier Transform, the Fourier Transform of the convolution of two signals is equal to		
	A The sum of their B The product of their individual Fourier individual Fourier Transforms Transforms		
	C The convolution of D The difference of their their individual Fourier individual Fourier Transforms		
iv.	What is the Fourier Transform of the Dirac delta function $\delta(t)$		
	$\mathbf{A} \delta(\mathbf{n}) \qquad \qquad \mathbf{B} \delta(\mathbf{w})$		
	C 0 D 1		
v.	What is the Laplace Transform of constant function 1?		
	$\mathbf{A} \frac{1}{S} \qquad \qquad \mathbf{B} \mathbf{S}$		

MM_BET22C401_15072024_12

1

Government Degree College, Baramulla (Autonomous)

	$C \frac{1}{2}$	D 0	
	S^2	640	
VI.	What is the Laplace Transform	n of t?	
	$\mathbf{A} \stackrel{1}{=}$	B 1	
	S		
	$C = \frac{1}{2}$	D 0	
	S ²		
vii.	What is the minimum sampling rate for a signal with a		
	maximum frequency component of 5 kHz, according to the		
		N 10111	
	A 5 KHZ	B 10 kHz	
	C 15 kHz	D 20 kHz	
viii.	What happens if a signal is sampled below the Nyquist rate?		
	A The signal will be l accurately reconstructed	B The signal will experience aliasing	
	C The signal will become I noise-free	D The signal will remain unchanged	
Section-B: Descriptive Type Questions (Short Type)			
O2: Answer all the Questions $(8 \times 4 = 32)$			
i.	What distinguishes a continuous-time signal from a discrete- time signal?		
ii.	Define Time varying and Time Invariant systems.		
iii.	Define Fourier transform of a continuous time signal.		
iv.	What is Dirac delta function? Find its Fourier transform.		
v.	What is the importance of Laplace transform in signals and systems?		

- vi. Discuss time shifting property of Laplace transform.
- vii. What is Autocorrelation of discrete time signals.

Government Degree College, Baramulla (Autonomous)

viii. What are Random variables?

Section – C: Descriptive Type Questions (Medium Type) Answer all the questions: (4 x 7=28)

Q 3. What are Linear and Non-Linear systems? Check whether the system represented by $y(t) = x^2(t)$ is linear or Non-Linear.

OR Differentiate between causal and non-causal systems.

Q 4. Explain the Time integration property of Fourier Transform.

OR Find Fourier transform of $x(t) = e^{-at} u(t)$

Q 5. Define Laplace transform of a signal. Discuss time shifting and frequency differentiation properties of Laplace transform.

OR

Find inverse Laplace transform of $F(S) = \frac{3}{S} - \frac{5}{S} + \frac{6}{S^2 + 4}$

Q6. Explain the importance of random variables in signals and systems.

OR Explain the concepts of Nyquist rate and Aliasing with respect to the process of Sampling.

Section – D: Descriptive Type Questions (Long Type)

Answer any two of the following:

Q 7. Explain the process of convolution for continuous-time signals. Derive the convolution integral and illustrate its application with an example involving two continuous-time signals.

MM_BET22C401_15072024_12

 $(2 \times 14=28)$

- Q 8. State and prove Frequency shifting property of Fourier transform. Also calculate Fourier transform of $x(t) = cos 2\pi f_0 t$
- Q 9. Using various properties of Laplace transform, calculate Laplace transform of following functions:

(i)
$$f(t) = \delta(t) + 2 u(t) e^{-2t}$$

(ii) t^2 Sin 2t u(t)

Q 10. State and Prove Sampling Theorem.