Government Degree College, Baramulla (Autonomous)

Term End External Examination 4th Semester (Session- July 2024) Subject: Mathematics					
Course No and Title: MMTC3422M/Theory of Numbers					
		Max Mark	•	Min. Marks:40	
Section A: Objective Type Questions					
Q1. Choose the appropriate Answer:				(8x1.5=12)	
	Congruence is a			()	
	A Reflexive relat	ion B	Symmetric relation	on	
	C Transitive relat		All the above		
ii.	Which of the following does not belongs to Reduced Residue				
	System (mod7)	C	C		
	A 1	В	7		
	C 3	D	-		
iii.	Which of the following linear Diophantine equation(s) has (have)				
	integral solution				
	A 4x + 6y = 8		3x + 6y = 7		
	C 2x + 4y = 7	D	5x + 10y = 8		
iv.	If $gcd(a, b) = d$ th	en gcd $\left(\frac{a}{d}, \frac{b}{d}\right)$	=		
	A a	B			
	C d	D	1		
v.	The order of 2 mod	lulo 7 is			
	A 1	В	2		
	C 3	D	4		
vi.	The smallest primitive root of 17 is				
	A 3	В	5		
	C 6	D	7		
vii.	Consider the cubic	equation Z^3 +	3HZ + G = 0. T	he equation	
	has one real and two imaginary roots when its discriminant is				
	A less than zero	B	Greater than zero		
	C Equal to zero	D	Does not	depend on	
			discriminant		
viii.	The number of neg		f(x) cannot exceed	ed the number (
	changes of signs in				
	A $f(x)$		f(x) and $f(-x)$		
	C $f(-x)$	D	f(x) or $f(-x)$		

MO_BMM22C403_27072024_11

	Section-B: Descriptive Type Questions (Short Type)				
Q2: Answer all the Questions (8 x 4 = 32)					
i.	Prove that the product of any three consecutive integers is divisible by 3!.				
ii.	Show that every integer $n > 1$ can be expressed as a product of				
iii.	one or more primes. Define Complete Residue System (CRS) and write CRS (mod 5) in two different ways.				
iv.	State and prove Quadratic reciprocity law.				
v.	Solve the equation $x^4 - 14x^3 + 73x^2 - 168x + 144 = 0$. It				
vi.	being given that it has two pairs of equal roots. Divide $x^4 - 10x^3 + 35x^2 - 48x + 27$ by $(x-1)(x-2)(x-3)$ and hence find quotient and remainder.				
vii.	Solve $x^3 + x + 10 = 0$ by Cardan's method.				
viii.	If α , β , γ be the roots of $x^3 + px^2 + qx + r = 0$, find the				
	value of $\sum \frac{1}{\alpha^2 \beta^2}$.				
Section – C: Descriptive Type Questions (Medium Type)					
	er all the questions: (4 x 7=28) . State and prove the necessary and sufficient condition for solvability of linear Diophantine equations. OR				
	State and prove Euclid's division algorithm.				
Q 4	• State Goldbach Conjecture and write down at least five integers that satisfy the conjecture. Also prove there are infinite number of primes.				
	OR				

Prove that there are infinitely many primes of the form 6q + 5. Also prove that if (a, b) = 1 then there are infinitely many primes of the form aq + b.

Q 5. Show that the integer 2^n has no primitive root for $n \ge 3$.

OR

MO_BMM22C403_27072024_11

1

Government Degree College, Baramulla (Autonomous)

State and prove the Euler's Criterion for an integer a to be a quadratic residue (mod p), where p is an odd prime.

Q6. Write down the Cardan's method of solution of cubic equations.

OR

Write down the Descartes method of solution of biquadratic equations.

Section – D: Descriptive Type Questions (Long Type)

Answer any two of the following:

- (2 x 14=28)
- **Q** 7. Define number theoretic function and show that τ and σ are multiplicative. Also define Mobius function and state and prove Mobius Inversion Formula.
- **8.** State and prove Chinese Remainder Theorem. Also write down at least one application of the Theorem.
- **Q 9.** State Fermat's and Euler's theorems. Also write down the applications of the two theorems. Moreover, write down the applications of linear congruences.
- Q 10 State and prove Remainder Theorem and Factor Theorem. Also diminish the roots of $x^3 3x^2 + 5x + 9 = 0$ by 25.