Government Degree College, Baramulla (Autonomous) Term End External Examination 4th Semester (Session- July 2024)					
<u>Subject: Mathematics</u>					
Course No and Title: MMTC1422M/Real Analysis-I Time: 2.15 hours Max Marks:100 Min. Marks:40					
Section A: Objective Type Questions					
Q1. Choose the appropriate Answer: (8x1.5=12)					
-					
i.	The infimum of a set is the sm	nallest member of the set.			
	A always	B sometimes			
	C both are same	D none of the above			
ii.	The smallest and the greatest member of the set $\left\{\frac{1}{n}; n \in N\right\}$ is				
	A 0, 1	B 0, does not exist			
	C does not exist, 1	D does not exist, does not exist			
iii.	A convergent sequence has				
	A finite	B infinite			
	C unique	D depending on the given			
	sequence				
iv.	Every bounded sequence has a limit point.				
	A true	B false			
	C cannot say	D depending on the given sequence			
v	A positive term series converges if and only if the sequence of its				
••	partial sums is				
	A convergent	B divergent			
	C bounded above	D bounded below			
vi.	A series is said to be an alternation	ating series whose terms are	ng series whose terms are		
	A alternately positive and	B only positive			
	negative				
	C only negative	D nothing can be said			
vii.	vii. For a bounded function to be Riemann integrable on a partition P				
	over $[a, b]$ A sup. $L(P, f)$	B sup. $L(P, f) \leq inf. U(P, f)$			
	$\begin{array}{l} A sup. L(P, f) \\ \geq inf. U(P, f) \end{array}$	$\mathbf{D} \operatorname{sup}(L(I,J) \geq U(J,U(F,J))$			
	C sup. $L(P, f)$	D none of the above			
	= inf.U(P,f)				

MM_BMT22C401_11012024_13

Government Degree College, Baramulla (Autonomous)

viii.	If P_1 and P_2 are two partitions, then their given by A $P_1 + P_2$ B $P_1 \cup P_2$ C $P_1 \cap P_2$ D none of the				
Section-B: Descriptive Type Questions (Short Type)					
Q2: Ai i.	nswer all the Questions Define field structure of a set.	(8 x 4 =32)			
ii.	For any real numbers x, a, ϵ , show that $ x - a < \epsilon$ if and only if a-				
iii.	$\epsilon < x < a + \epsilon$. Write a short not on 'Sequence'.				
iv.	Define limit superior and limit inferior of a sequence.				
v.	Show that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge.				
vi.	Show that the necessary condition for convergence of an infinite series $\sum u_n$ is that $\lim_{n \to \infty} u_n = 0$.				
vii.	Show that the function f defined by $f(x) = \begin{bmatrix} 0, & when x \text{ is rational} \\ 1, & when x \text{ is irrational} \end{bmatrix}$ is not integrable on any interval.				
viii.	For any two partitions P_1 and P_2 , show that $L(P_1, f) \le U(P_2, f)$.				
Section – C: Descriptive Type Questions (Medium Type)					
	er all the questions: . State and Prove Triangle Inequality.	(4 x 7=28)			
OR					
	State and prove Archimedean Property of a	set.			
Q 4.	. State and Prove Bolzano-Weierstrass theory	em.			
OR State and Prove Nested Interval theorem.					
Q 5.	• Test the behaviour of the series $\frac{x}{1} + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^3}{3}$	$\frac{x^4}{4} + \cdots$			

MM_BMT22C401_11012024_13

1

2

Government Degree College, Baramulla (Autonomous)

OR

Test the behaviour of the series $\sum_{n=1}^{n+1} \frac{n}{n^p}$

Q6. Define refinement of a partition. If P^* is a refinement of a partition P, then show that for a bounded function. $L(P^*, f) \ge L(P, f)$ $U(P^*, f) \le U(P, f)$

OR

Show that (3x+1) is integrable on [1, 2] and $\int_{1}^{2} (3x+1)dx = \frac{11}{2}$

Section – D: Descriptive Type Questions (Long Type)

Answer any two of the following:

Q 7. Prove that the set of Rational numbers is not order-complete.

8. State and Prove Cauchy's first theorem on limits.

- **Q 9.** Show that a positive term series $\sum_{n^p} \frac{1}{n^p}$ is convergent if and only if p > 1.
- **Q 10.** If fland f2 are two bounded and integrable functions on [a, b], then f = f1 + f2 is also integrable on [a, b], and $\int_a^b f_1 dx + \int_a^b f_2 dx = \int_a^b f dx$.

(2 x 14=28)