Term End External Examination 4th Semester (Session- July 2024)					
	Subject: Physcis				
Course No and Title: PHYC2422M/Classical Mechanics					
Time: 2.15 hours	Max Marks:100	Min. Marks:40			
Section A: Objective Type Questions					
Q1. Choose the appropriate Answer:		(8x1.5=12)			

The dynamics of a particle governed by the Lagrangian i. t

$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2 - kx\dot{x}$$

describes

- A an undamped simple **B** a damped harmonic oscillator harmonic oscillator with a time varying damping factor
- **C** a undamped harmonic **D** a free particle oscillator with a time dependent frequency
- The Lagrangian of a particle of mass m moving in one dimension is ii. given by

 $L = \frac{1}{2}m\dot{x}^2 - bx$

where b is a positive constant. The coordinates of the particle x(t)at time t is given by: (in following c_1 and c_2 are constants)

 $-\frac{\ddot{b}}{2m}t^2 + c_1t + c_2 \qquad \mathbf{B} \qquad c_1t + c_2$ $\frac{b}{2m}t^2 + c_2 \qquad \mathbf{D} \qquad \frac{b}{2m}t^2 + c_1$ А С

iii.

A particle moves in a potential $V = x^2 + y^2 + \frac{z^2}{2}$. Which component (s) of the angular momentum is/are constant (s) of motion?

A	L_x , L_y and L_z	В	only L_x and L_y
С	only L_z	D	none

The Hamiltonian of a system with n degrees of freedom is given by iv. $H(q_1, ..., q_n; p_1, ..., p_n; t)$ with an explicit dependence on the time t. Which of the following is correct?

1

MO BPH22C402 31072024 12

Government Degree College, Baramulla (Autonomous)

	A	Different phase trajectories cannot intersect each other.	B	Any initial volume element in phase space remains unchanged in magnitude under time evolution.		
	С	The equations $\dot{q}_i = \frac{\partial H}{\partial p_i}$, $\dot{p}_i = -\frac{\partial H}{\partial q_i}$ are not valid since <i>H</i> has explicit time dependence	D	<i>H</i> always represents the total energy of the system and is a constant of the motion.		
v.	A c	anonical transformation rel	ates	the old coordinates (q, p) to new		
	ones (Q, P) by the relation $Q = q^2$ and $P = \frac{p}{2q}$. The corresponding					
	tim	e independent generating fu	ncti	onis		
	A	<u>P</u>	B	$q^2 P$		
	С	$\frac{q^2}{q^2}$	D	qP^2		
vi.	If the given transformations $Q = q^m \cos np$, $P = q^m \sin np$ are canonical. What will be the value of m and n?					
	Α	m = 1, n = 2	B	$m = \frac{1}{2}, n = 2$		
	С	$m = 2, n = \frac{1}{2}$	D	m = 2, n = 1		
vii.	The	Poisson bracket $\{ \vec{r} , p \}$	nas t	he value		
	A	r p	B	$ec{r}.ec{p}$		
	С	$\hat{r}.\hat{p}$	D	none		
viii.	Which physical quantity is conserved due to the symmetry properties of Poisson brackets in Hamiltonian mechanics?					
	A C	Momentum Angular momentum	В	Energy		
	S	Augular momentum	ע ה0	rone lestions (Short Type)		
02. 4	O2. A second lithe O setting of the guestions (Short Type)					
ι ί	nsw . A W or	bead is constrained to m rite the constraint equation non-holonomic.	ove and	on a circular wire of radius R . l identify whether it is holonomic		
ii	ii. A system of particles is bound by a gravitational potential. The total kinetic energy of the system is $T = 10^6$ J. Using the Virial					

MO BPH22C402 31072024 12

Government Degree College, Baramulla (Autonomous)

theorem, find the total potential energy.

- iii. A particle moves in a central potential V(r). Show that the angular momentum is conserved.
- iv. Write Hamilton's equations of motion in terms of Hamiltonian function.
- **v.** Describe the principle of least action and its significance in classical mechanics.
- vi. What are the conditions that a transformation must satisfy to be considered canonical?
- vii. State and explain Poisson's theorem.
- viii. State and explain Liouville's theorem in Hamiltonian mechanics.

SECTION - C: DESCRIPTIVE TYPE QUESTIONS (Medium Type)

Answer all the questions:

- (4 x 7=28)
- Q3. State Noether's theorem and explain the connection between symmetries and conservation laws.

OR

Define constraints in a mechanical system and classify them into holonomic and non-holonomic constraints with examples.

Q4. Define the canonical momentum for a system described by the Lagrangian $L(q_i, \dot{q}_i, t)$. Given a Lagrangian $L = \frac{1}{2}m\dot{x}^2 - V(x)$, find the canonical momentum and the Hamiltonian.

OR

Obtain the Hamiltonian and Hamilton's equations of motion one dimensional harmonic oscillator with mass m and spring constant k.

Q5. Show directly that transformations

a)
$$Q = \log\left(\frac{1}{q}\sin p\right), P = q\cot p$$

b)
$$Q = p \tan q$$
, $P = \log(\sin p)$

are canonical.

MO_BPH22C402_31072024_12

MO_BPH22C402_31072024_12

Answer all the questions:

4

OR

A particle of mass *m* moves in a one-dimensional potential $V(x) = \frac{1}{2}kx^2$. Use the principle of least action to find the path of the particle if it moves from $x_0 = 0$ at t = 0 to $x_f = A$ at t = T.

Q6. Find the Poisson bracket of $\alpha p^2 + 2\beta pq + \gamma q^2$

with the Hamiltonian

$$I = ap^2 + bq^2 + cp + dq + e$$

where α , β , γ , a, b, c, d and e are all constants.

OR

Evaluate the following Poisson brackets

a) $[J_x, P_y]$ b) $[J_x, J_y]$ c) $[J_x, P_x]$.

Section – C: Descriptive Type Questions (Medium Type)

(4 x 7=28)

- **Q** 7. Derive lagrangian equation of motion using D'Alembert's principle.
- **Q 8.** Compare and contrast the Newtonian, Lagrangian, and Hamiltonian formulations of classical mechanics. Discuss the advantages and disadvantages of each approach in analyzing physical systems.
- **Q 9.** What is a canonical transformation? What is the condition for the transformation to be canonical? How it can be used to reduce the number of independent variables? Can a canonical transformation reveal symmetry in a physical system?
- **Q 10.** Define the Jacobi identity for Poisson brackets and explain its significance in Hamiltonian mechanics. Provide a detailed proof of the Jacobi identity