Government Degree College, Baramulla (Autonomous)

Term End External Examination 4th Semester (Session- July 2024)							
	<u>Subjec</u>	t: P	<u>Physics</u>				
Course No and Title: PHYC3422M/Mathematical Physics							
Time	: 2.15 hours Max M	ks:100 Min. Marks:40					
Section A: Objective Type Questions							
Q1. C	(8x1.5=12)						
i.	Which of the following	fun	ctions is continuous but not				
	differentiable at x=0.						
		В	f(x) = x				
	$\mathbf{C} f(x) = sinx$	D	$f(x) = e^x$				
ii.	The degree of the differential equation $y''' + 2(y'')^3 + 5y' =$						
	0 is						
	A 3	В	2				
	C 1	D	0				
iii.	What is the value of $e^{i\pi}$?						
	A 1	В	-1				
	C i	D	-i				
iv.	If $f(z) = u(x, y) + i v(x, y)$, is an analytical function then $f'(z)$						
	equals						
	$ \begin{array}{c} \mathbf{A} & \frac{\partial u}{\partial x} + i \ \frac{\partial v}{\partial x} \\ \mathbf{C} & \frac{\partial u}{\partial x} + i \ \frac{\partial u}{\partial y} \end{array} $	B	$\partial u = \partial v$				
	$\frac{\partial x}{\partial x} + l \frac{\partial x}{\partial x}$		$\frac{\partial x}{\partial x} = l \frac{\partial x}{\partial x}$				
	$\mathbf{C} \partial u \partial u$	D	None of the above				
	$\frac{\partial x}{\partial x} + i \frac{\partial y}{\partial y}$						
v.		A is a (n x n) identity matrix. What is the trace of A?					
	A 0	В	$\frac{1}{n^2}$				
	C n	~					
vi.	The eigen values of a matrix A are 2, 3, and 1. What is the value						
	of A ?						
	A 5	B					
	C 3	D	-				
vii.	The Fourier Series of an odd function will contain						
	A only sine terms	B	only cosine terms				
	C both sine and cosine	D	neither sine nor cosine terms				
	terms						

MO_BPH22C403_29072024_13

Government Degree College, Baramulla (Autonomous)

viii.	i. What is the Fourier Transform of delta function		
	Α	0	B 1
	С	$e^{i\omega}$	D $\delta(\omega)$

Section-B: Descriptive Type Questions (Short Type)

Q2: Answer all the Questions

i. Find
$$\frac{dy}{dx}$$
, if $y + siny = cosx$.

ii. Find the value of λ for which the function

$$f(x) = \begin{cases} \lambda x + 1, & x \le 3\\ 3x + 4, & x > 3 \end{cases}$$

is continuous.

- iii. State and prove De Moivre's Theorem.
- iv. Using Cauchy Rieman equations, show that the function $e^{x}(\cos y + i \sin y)$ is an analytic function.
- **v.** If A and B are invertible matrices of same order then prove that $(AB)^{-1} = B^{-1}A^{-1}$.
- vi. Show that $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ is unitary matrix.
- vii. What are Dirichlet's Conditions for a Fourier Series?
- viii. If F(s) is the complex Fourier Transform of f(x), then prove that

$$F\{f(x-a)\} = e^{isa} F(s)$$

Section – C: Descriptive Type Questions (Medium Type)

(4 x 7=28)

 $(8 \times 4 = 32)$

Q3. Plot the graph of the function f(x) = |x| and discuss the continuity of the function.

OR

Solve the following differential equation.

$$\frac{dy}{dx} + \frac{y}{x} = x^3 - 3$$

MO_BPH22C403_29072024_13

1

Answer all the questions:

Government Degree College, Baramulla (Autonomous)

Q4. Prove that for two complex numbers Z_1 and Z_2 , $|Z_1 + Z_2| \le |Z_1| + |Z_2|$.

OR

Solve $x^4 + 1 = 0$.

Q5. Prove that every square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew - symmetric matrix.

OR

Prove that the eigen values of a Hermitian matrix are all real.

Q6. Find the Fourier Transform of

$$f(t) = \begin{cases} t & |t| \le 1\\ 0 & |t| > 1 \end{cases}$$
OR

Deduce expansion for Fourier Series in the complex form.

Section – D: Descriptive Type Questions (Long Type)

Answer any two of the following:

- (2 x 14=28)
- **Q7.** Show that the following differential equation is a Homogeneous equation and then solve it.

$$x^2 \frac{dy}{dx} = x^2 - 2y^2 + xy$$

- **Q8.** Derive Cauchy Rieman Conditions. Determine whether 1/z is analytic or not?
- **Q9.** Find the eigen values and eigen vectors of

$$\begin{bmatrix} 8 & -6 & 0 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

Q10. Find the Fourier expansion of $f(x) = x^2$, and show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi}{6}$.